

OpenVMS Integrity Server VHPT Sizing for Large
Applications Performance

Bruce Ellis

BRUDEN-OSSG

Overview
 This paper describes the Virtual Hash Page Table (VHPT) on OpenVMS integrity
Servers and how certain types of applications may yield a 5% to 9% performance gain in
CPU time by adjusting the size of the VHPT.
 The paper idea started long ago when I sat in a session given by Andy Kuehnel, of
OpenVMS Engineering, discussing memory management changes for Integrity Server
systems. In the session there was a brief discussion of the VHPT and a note that it was
sized by the system parameter VHPT_SIZE. The parameter has a default setting of 1.
With this setting, the VHPT is sized as the value that "OpenVMS considers optimal".
That value is fixed at 32K bytes. A value of 0 disables the VHPT. A value larger than 1
is rounded to the next power of 2.
 It seemed that there might be cases where it might be changed for tuning
purposes. At the time, I just let it go.

 For the purposes of this paper, we will assume that the reader has a fundamental
understanding of the translation buffer (TLB), and how it acts as an address translation
cache. For more background on the TLB for both Alpha and Integrity Server systems,
please refer to the Intel® Itanium® Architecture Software Developer’s Manual Volume
2: System Architecture.
 When the CPU attempts to translate a virtual address, it uses a hash to look in the
TLB, which is made up of on-CPU (or on-Core) memory. If the translation information
is found in the TLB and the address is associated with the current process or kernel
thread, it is completed and the CPU continues execution. TLBs exist for instructions
(ITLB) and data (DTLB).
 If the translation is not found in the cache, assuming there is no VHPT (which
will happen if VHPT_SIZE is set to 0), an interruption is generated and control is passed
to a small piece of code in a system table called the Interruption Vector Table (IVT). The
IVT code will use normal three-level address translation to look up the page table entry
for the page. If the page is valid (in memory and owned by the process), the location of
the page, or its Page Frame Number (PFN), is mapped into the TLB and the miss is
resolved. If while examining the page table entry it is determined that the page is not
valid, a page fault is generated. If the page table entry identifies that the executing code
does not have read, write, or execute permission, an access violation is generated.
 In the lookup process of locating the page table entry, three memory fetches can
be generated. This will slow down the CPU performance of the application. On a well
behaved, relatively small application, most address translations are completed using the
TLB, minimizing this overhead.

© Copyright 2008 BRUDEN-OSSG 1

 Integrity Server systems provide an additional level of translation assist that
works between the TLB and physical address translation. This mechanism is through the
VHPT. The VHPT is a linear array of 32-byte entries (although IA64 supports 8-byte
entries), similar in nature to the TLB. The VHPT entry contains a tag that uniquely
identifies a virtual address and a region identifier. The region identifier uniquely
associates the address with a specific process or kernel thread. If the tag generated on the
lookup matches the tag value in the VHPT, there is a match. The VHPT entries also
contain the PFN of the location of the page in physical memory. Additional contents of a
VHPT entry include a tag invalid bit and page protection information, among other fields.
If the tag invalid bit is set, the entry is stale and will not be used in the translation.
 The VHPT is allocated from physically contiguous memory at boot time. It is
mapped through a "pinned" translation that cannot be displaced from the TLB.
 The VHPT is accessed through a component of the CPU called the VHPT walker.
So, no software intervention is required to access the VHPT. Although, there is support
for operating systems to directly access the VHPT and maintain collision lists on
common tags. OpenVMS does not currently use this feature.
 In summary, the VHPT provides an additional, relatively high performance
mechanism to resolve TLB misses without software intervention. It is slower than using
the TLB, but faster than performing a three-level address translation.

Sizing the VHPT

 One would assume that the VHPT would, in general, benefit performance. In
some cases a larger VHPT should improve performance. On well behaved applications,
that are relatively small, the default setting for the VHPT is more than sufficient. As
mentioned earlier, the default size of the VHPT is 32K bytes. This size allows for
mapping 1024 addresses. With an 8192-byte page size, an application that is 8MB in
size, or smaller, will not exceed this space. You should see significant benefits with the
default setting.
 The notion of a "well behaved" application is not intended to be a qualitative
viewpoint of how the program was written. What we mean by "well behaved" is that the
application tends to touch pages in close proximity in memory. An example of this type
of application might be a program that accesses a large array iteratively from the lowest
index to the highest. If you had a large array of longwords and accessed it in this fashion,
you would touch the first longword in a page and likely get a TLB miss. From that point
on, you would get 2047 hits (with the default 8192-byte page). This would be followed
by a miss and 2047 more hits. In this type of application, the size of the VHPT would not
matter, unless you accessed
 The reality is that most applications use large arrays specifically so that they can
access them randomly, leading to poorer locality. Additionally, large applications may
organize data in trees that may also have poorer locality. There are design strategies that
can lead to better locality, but most large applications will have some degree of poor
locality.

© Copyright 2008 BRUDEN-OSSG 2

 Problems with the default size come into play when you have a large application
with poor temporal locality. Poor temporal locality means that the application tends to
frequently touch a memory location then, touch another that is not in close proximity. In
this scenario, many virtual addresses are touched over a short period of time, causing the
VHPT to fill and increase the likelihood of tag collisions. When a tag collision (an
address hashes to a tag that is already in use) occurs, we loose the old VHPT entry and it
is replaced with the new translation. This behavior minimizes the effectiveness of the
VHPT and begs for tuning the size of the VHPT.
 Large scientific applications, database applications, among others are large
programs that frequently operate with poor locality.
 To test sizing the VHPT, I have a program that I wrote many years ago that
computes frequency and connectivity of lottery numbers, based on history. This factor is
calculated for all possible combinations of the Colorado Lottery (5 million
combinations). After computing the factor, an array of pointers to each combination is
generated and the pointers are sorted from highest factor to lowest. The program has not
increased the chances of picking a winning set of numbers, which is why I write this
article. It does have the characteristic that it touches a lot of memory with very poor
temporal locality. I have used the program to test memory interleaving performance, the
performance of hyperthreads, as well as in these tests. Interestingly, the benefits
achieved through the use of hyperthreading were mirrored in Oracle applications.
 In my initial tests, I ran the program with a hodgepodge of settings to try to find
where the sweet spot in performance would be achieved. I later ran tests with another
size and also tested performance with the VHPT disabled. The tests reported are single
runs, although I have repeated runs to show that the numbers stay close. The tests were
run on a rx2600 with 2 CPUs (1.4 GHz). The results are reported in Table 1.

VHPT_SIZE
(cost per
CPU)

Delta VMS Memory
Cost in Pages From
Default (w/ 2 CPUs)

Elapsed
Time

Elapsed
CPU

Page Faults

0
(Disabled)

+32KB 18.53 18.17 30936

1 (32K) 0 18.51 18.15 30899
512K 120 17.61 17.23 30894

2048K 384 16.81 16.42 30786
8192K 2041 17.00 16.61 30932

262144K 65591 16.74 16.34 30894

Table 1: Single Thread Performance with Varying VHPT Sizes

© Copyright 2008 BRUDEN-OSSG 3

0

2

4

6

8

10

12

14

16

18

20

Elapsed Time CPU Time

VHPT_SIZE=0

VHPT_SIZE=1

VHPT_SIZE=512
VHPT_SIZE=2048

VHPT_SIZE=8192

VHPT_SIZE=262144

 S

e
c
o
n
d
s

The mos
performance deg
locality caused a
 The setti
CPU time and e
VHPT entries.
required to map
 Over-co
improvement in
behavior can be
provide signific
 This beg
VHPT, the more
is a drop in the b
Additionally, in
again, the VHPT
must be invalida
 So, how
method is trial a
method is to det
If you size the V

4
Single Thread Performance with Varying VHPT Sizes
t interesting results may be that disabling the VHPT had minimal
radation (less than .01%). This is likely due to the fact that the poor
 lot of displacement of the default 1024 entries.
ng of 2048 seemed to be the sweet spot setting for this application. Note,
lapsed time were reduced close to 9%. This setting allowed for 128896
This number of VHPT entries was likely equal to or greater than the size
 the entire virtual address space of the application.
mmitting the size costs additional memory and does not yield significant
 performance. In fact, the 8192K size showed slight degradation. This
 due to the hash algorithm itself maintaining VHPT entries that due not
antly more hits on translation.
s the question, what is the cost of over-sizing the VHPT? The larger the
 memory is taken away from the system. On modern systems, 384 pages
ucket. This is not the case when the VHPT eats up 65591 pages.

 rare cases where data is allocated, touched once or twice and never
 support is wasted. Again, when an image runs down, VHPT entries
ted, which incurs a slight CPU cost.

 do you determine the appropriate VHPT size for large applications? One
nd error or experimenting with different sizes. A little more scientific
ermine the peak virtual address space size for a typical large application.
HPT large enough to hold the maximum number of page table entries,

© Copyright 2008 BRUDEN-OSSG

you should always have entries to resolve the corresponding TLB misses. The size can
be calculated using (F$GETJPI("","VIRTPEAK")*16 (pagelets to pages))*32 (VHPT
entry size)/1024 rounded up to the next power of two.

Multiple Process Sizing Tests

 It is rare that you own a system that will run a single application. Tests were
performed to calculate the performance of 4 programs running concurrently on a single 2
CPU rx2600. In this case, the multiple processes would trade off the use of the CPUs.
These results are listed in table 2.

VHPT_
SIZE

JOB 1
Elapsed

JOB 2
Elapsed

JOB 3
Elapsed

JOB 4
Elapsed

Avg
Elapsed

JOB 1
CPU

JOB 2
CPU

JOB 3
CPU

JOB 4
CPU

Avg
CPU

0
(off)

37.82 37.88 38.18 37.63 37.88 18.94 19.01 18.94 19.00 18.75

1
(32K)

38.31 38.46 38.32 38.44 38.35 19.11 19.22 19.13 19.24 19.18

512 37.10 37.25 37.22 37.30 37.22 18.46 18.57 18.70 18.54 18.57
1024 36.85 36.85 36.63 36.69 36.76 18.36 18.30 18.22 18.35 18.31
2048 36.89 36.60 36.75 37.03 36.82 18.29 18.31 18.33 18.67 18.40
4096 36.95 36.78 36.74 36.41 36.72 18.22 18.34 18.36 18.22 18.29
8192 36.97 36.82 36.63 37.16 36.90 18.26 18.46 18.41 18.47 18.40

Table 2: 4 Computable Threads with 2 CPUs

0

5

10

15

20

25

30

35

40

Avg Elapsed Time Avg CPU Time

VHPT=0
VHPT=1
VHPT=512
VHPT=1024
VHPT=2048
VHPT=4096
VHPT=8192

Computable Threads with 2 CPUs

© Copyright 2008 BRUDEN-OSSG 5

Table 2 shows that almost any value for VHPT_SIZE is better than the default setting. In
the case of disabling the VHPT, you are eliminating an extra step to look in the VHPT for
a translation that you usually do not find. In the best case scenarios, you are seeing about
a 4.5% improvement in performance. The competing processes are sharing the VHPT
and losing some of the benefits of almost exclusive access to the cache. The setting of
4096 yields only slightly better (not statistically significant) improvement over 1024.
The setting of 1024 costs 4 times less memory than 4096, and would probably be the way
to go.

 OpenVMS tries to keep processes and kernel threads scheduled on the same CPU.
It is not always effective. Processes can drift from CPU to CPU over time. It is probably
at least worth a test, where the processes are locked into the same CPU, to prevent
restarting the build of the VHPT on a new CPU. We implement the next set of tests by
setting affinity for Jobs 1 and 2 to CPU 0. Jobs 3 and 4 have affinity set to CPU 1. This
method is not always practical, but is at least worth testing. Table 3 shows the results.

VHPT_
SIZE

JOB 1
Elapsed

JOB 2
Elapsed

JOB 3
Elapsed

JOB 4
Elapsed

Avg
Elapsed

JOB 1
CPU

JOB 2
CPU

JOB 3
CPU

JOB 4
CPU

Avg
CPU

0
(off)

37.91 38.38 37.77 37.82 37.95 19.04 19.28 18.87 18.89 19.02

1
(32K)

38.89 38.79 38.08 38.14 38.48 19.46 19.22 19.01 19.08 19.19

512 37.49 37.48 36.76 36.83 37.14 18.63 18.84 18.38 18.41 18.57
1024 36.51 36.40 35.88 35.93 36.18 18.18 18.23 17.94 17.80 18.03
2048 36.52 36.57 35.97 35.95 36.25 18.30 18.22 17.98 17.99 18.12
4096 36.34 36.38 35.85 35.89 36.12 18.05 18.26 17.92 17.89 18.03
8192 37.05 36.90 36.23 36.25 36.61 18.30 18.42 18.03 18.02 18.19

Table 3: 4 Computable Threads with 2 CPUs and Affinity Split Between CPUs

© Copyright 2008 BRUDEN-OSSG 6

0

5

10

15

20

25

30

35

40

Avg Elapsed Time Avg CPU Time

VHPT=0
VHPT=1
VHPT=512
VHPT=1024
VHPT=2048
VHPT=4096
VHPT=8192

 Computable Threads with 2 CPUs and Affinity Split Between

CPUs

Table 3 shows that, when we can use affinity to force processes to the same CPU, we get
much closer to 6% performance improvement. Again, these tests tend to be more of a
proof of the theory that reusing the same CPUs provides the benefits of reusing the
VHPT cache over the cost of rebuilding, than really providing a practical solution. You
could implement this method using batch logins to alternatively select affinity from
available CPUs. In a system with a large number of processes, this could lead to
occasional CPU starvation.

 To come up with a starting value for VHPT_SIZE, it is not practical to run
applications and continually reset the VHPT_SIZE. As mentioned earlier, you can get a
good starting value by viewing the Virtual Address Space Peak through F$GETJPI or the
accounting record. The following display shows the virtual peak size from a batch
accounting record. The virtual peak number is in pagelet units. If you multiply the
number by 512 and divide by the page size on OpenVMS IA64 (8192 bytes), then
multiply by 32 (the size of a VHPT entry), you will get the size in bytes of the VHPT that
would cache all virtual addresses for a given application. Then divide by 1024, as the
VHPT_SIZE in "K" units. You can then round up or down to the next power of 2 to get a
starting value for VHPT_SIZE. In the example below, you would start at either 1024 or

© Copyright 2008 BRUDEN-OSSG 7

2048 for VHPT_SIZE. The heuristic evidence shows that either of these values is very
close to the sweet spot for the performance of the application.

 Accounting information:
 Buffered I/O count: 59 Peak working set size: 497440
 Direct I/O count: 95 Peak virtual size: 676624
 Page faults: 31351 Mounted volumes: 0
 Charged CPU time: 0 00:00:19.04 Elapsed time: 0 00:00:37.91
$ write sys$output (676624*512)/8192*32
1353248
$
$ write sys$output (((676624*512)/8192*32)*2/2)/1024
1321
$

 It should be noted that these calculations work best when using large applications
with poor locality. A system that runs small applications or applications that have good
temporal locality may require no change to VHPT_SIZE, whatsoever.

What about the Real World?

 These tests were all performed using a single application. How does changing
VHPT_SIZE affect other applications?
 In a Java application that wrote 30,000 records to a file, run time went from
1:40.918 elapsed time to 1:35.042 by setting VHPT_SIZE from 1 to 2048, about a 6%
improvement.
 In an Oracle 10g test, elapsed time went from 405 seconds (VHPT_SIZE == 1) to
380 seconds (VHPT_SIZE set to 2048), again about a 6% improvement in elapsed time.
The test database contained information about 50,000 customers, 200,000 customer
orders and 200,000 ordered items. The test fetched data about 2,000 random customers
and all of their associated orders/items. This was a read only test, all data was in the SGA
(database cache) and no I/O was being performed. The test was CPU bound.

 In another set of Oracle 10g tests from two different production applications, the
results were more impressive. The results are shown in the table below. The setting of
VHPT_SIZE at 10,000 would be rounded up to 16,384.

 VHPT_SIZE = 1 VHPT_SIZE=10,000
Job 1 Elapsed
Time

00::32.29.00 (1929 seconds) 00:25:31.00 (1531 seconds)

Job 2 Elapsed
Time

00:08:36.11 (516.11 seconds) 00:06:32.00 (392 seconds)

Table 4: Production Oracle 10g Tests

© Copyright 2008 BRUDEN-OSSG 8

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Job1 Elapsed Time Job 2 Elapsed Time

VHPT_SIZE=1
VHPT SIZE=10000

S
e
c
o
n
d
s

Oracle 10g Production Run Tests

Little scientific method was used to come up with these initial settings, yet there

was a gain in each case. It should also be noted that increasing VHPT_SIZE will
improve the CPU time portion of elapsed time, it will do nothing for I/O related
activities, which factor into elapsed time.

Can I Monitor VHPT Performance?

 Many performance metrics are provided by the OpenVMS executive, that make it
easy to monitor activities like page fault rate, CPU time usage, I/O, etc. The VHPT
operates at a level lower than OpenVMS, so the O/S does not keep counters. However,
there is a Performance Monitoring Unit (PMU) on the Itanium CPU/Core that can be
used to gather low level statistics.
 OpenVMS provides a PRF extension to the System Dump Analyzer. It allows
you to track hundreds of PMU statistics. The information is not necessarily intuitive, but
it does provide counters on VHPT walks and hits.
 You need to load the PRF execlet with a PRF LOAD command in SDA. You
then start the monitor with PRF START MONITOR. You can view the PMU statistics
using PRF SHOW MONITOR. There are many statistics that are displayed. The
following sample shows a command procedure to extract statistics of relevance to the
VHPT. The statistics are pretty raw, but note how the number of walks and hits go up in
the second run with a larger VHPT_SIZE.

© Copyright 2008 BRUDEN-OSSG 9

Sample Run with 4 Jobs Followed by 4 More (VHPT_SIZE ==1)
$ ana/sys

OpenVMS system analyzer

SDA> prf load
PRF$DEBUG load status = 00000001
SDA> prf start monitor
Event Monitoring started...
SDA> Exit
$
$ type mon_vhpt.com
$ pipe write sys$output "prf show monitor" | ana/sys | search sys$input "VHPT","HPW"
$
$ @mon_vhpt
 VHPT_WALKER.ren 0 0.000%
 HPW_IDEMAND_HITS.ren 0 0.000%
 HPW_DHITS.calc 2 0.000%
$ @mon_vhpt
 VHPT_WALKER.ren 9443219 3.464%
 HPW_IDEMAND_HITS.ren 0 0.000%
 HPW_DHITS.calc 132533 0.135%
$ @mon_vhpt
 VHPT_WALKER.ren 20238930 4.271%
 HPW_IDEMAND_HITS.ren 0 0.000%
 HPW_DHITS.calc 306863 0.214%
$ @mon_vhpt
 VHPT_WALKER.ren 33465222 4.145%
 HPW_IDEMAND_HITS.ren 0 0.000%
 HPW_DHITS.calc 487726 0.193%
$ @mon_vhpt
 VHPT_WALKER.ren 51768604 4.470%
 HPW_IDEMAND_HITS.ren 0 0.000%
 HPW_DHITS.calc 758175 0.225%
$

© Copyright 2008 BRUDEN-OSSG 10

Sample Run with 4 Jobs Followed by 4 More (VHPT_SIZE ==1024)
$ ana/sys

OpenVMS system analyzer

SDA> prf load
PRF$DEBUG load status = 00000001
SDA> prf start monitor
Event Monitoring started...
SDA> Exit
$
$ @mon_vhpt
 VHPT_WALKER.ren 0 0.000%
 HPW_IDEMAND_HITS.ren 0 0.000%
 HPW_DHITS.calc 166 0.015%
$ @mon_vhpt
 VHPT_WALKER.ren 23268887 8.452%
 HPW_IDEMAND_HITS.ren 0 0.000%
 HPW_DHITS.calc 379741 0.407%
$ @mon_vhpt
 VHPT_WALKER.ren 54159928 10.834%
 HPW_IDEMAND_HITS.ren 0 0.000%
 HPW_DHITS.calc 804501 0.615%
$ @mon_vhpt
 VHPT_WALKER.ren 102637892 11.281%
 HPW_IDEMAND_HITS.ren 13 0.000%
 HPW_DHITS.calc 1442057 0.597%
$ @mon_vhpt
 VHPT_WALKER.ren 128836279 11.681%
 HPW_IDEMAND_HITS.ren 13 0.000%
 HPW_DHITS.calc 1828584 0.663%
$

Conclusion

 If you have well behaved, relatively small applications (virtual address space is
about 8 MB or less), you probably do not need to worry about sizing the VHPT_SIZE
parameter. If you have larger applications, with poor locality (the two usually go hand-
in-hand), consider increasing the VHPT_SIZE. Initial sizing should be based
approximately on your largest peak virtual address size. The actual gains in performance
are obviously application specific but may well be in the 4% to 9% range.

Acknowledgements

 The author would like to offer his appreciation to Guy Peleg of Maklee
Engineering for his input and Oracle 10g benchmarks and Norm Lastovica of Oracle
Corporation for his insights and recommendations for improving the article.

© Copyright 2008 BRUDEN-OSSG 11

